博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    Mysql:SQL性能分析
    查看>>
    mysql:SQL按时间查询方法总结
    查看>>
    MySQL:什么样的字段适合加索引?什么样的字段不适合加索引
    查看>>
    MySQL:判断逗号分隔的字符串中是否包含某个字符串
    查看>>
    MySQL:某个ip连接mysql失败次数过多,导致ip锁定
    查看>>
    MySQL:索引失效场景总结
    查看>>
    Mysql:避免重复的插入数据方法汇总
    查看>>
    MyS中的IF
    查看>>
    M_Map工具箱简介及地理图形绘制
    查看>>
    m_Orchestrate learning system---二十二、html代码如何变的容易
    查看>>
    M×N 形状 numpy.ndarray 的滑动窗口
    查看>>
    m个苹果放入n个盘子问题
    查看>>
    n = 3 , while n , continue
    查看>>
    n 叉树后序遍历转换为链表问题的深入探讨
    查看>>
    N!
    查看>>
    N-Gram的基本原理
    查看>>
    n1 c语言程序,全国青少年软件编程等级考试C语言经典程序题10道七
    查看>>
    Nacos Client常用配置
    查看>>
    nacos config
    查看>>
    Nacos Config--服务配置
    查看>>