博客
关于我
java 牛客:因子个数
阅读量:749 次
发布时间:2019-03-22

本文共 2746 字,大约阅读时间需要 9 分钟。

To solve this problem, we need to determine the number of factors for each given positive integer. The solution involves understanding the prime factorization of a number and using it to compute the total number of factors.

Approach

The approach can be broken down into the following steps:

  • Prime Factorization: Decompose the given number into its prime factors. For example, the number 36 can be decomposed into (2^2 \times 3^2).

  • Exponent Tracking: For each prime factor, determine its exponent in the factorization. For instance, in the case of 36, the exponent of 2 is 2, and the exponent of 3 is also 2.

  • Calculate Factors: The total number of factors of a number can be found by taking the product of each prime factor's exponent incremented by one. For example, using the prime factors of 36, the total number of factors is ((2+1) \times (2+1) = 9).

  • Efficient Looping: Use efficient looping techniques to iterate through potential factors, and stop early when further division isn't possible. This optimization prevents unnecessary computations.

  • Solution Code

    import java.util.Scanner;public class Main {    public static void main(String[] args) {        Scanner scanner = new Scanner(System.in);        while (scanner.hasNextInt()) {            int n = scanner.nextInt();            System.out.println(countFactors(n));        }    }    private static int countFactors(int n) {        if (n <= 1) {            return 1;        }        int factors = 1;        for (int i = 2; i * i <= n; ) {            if (n % i == 0) {                int exponent = 0;                while (n % i == 0) {                    exponent++;                    n /= i;                }                factors *= (exponent + 1);            } else {                i++;            }        }        if (n > 1) {            factors *= 2;        }        return factors;    }}

    Explanation

  • Reading Input: The code reads each integer from the standard input.
  • Handling Special Cases: If the input number is 1, it directly returns 1 as it is the only factor.
  • Prime Factorization Loop: The loop iterates from 2 up to the square root of the number. For each potential factor, it checks if it divides the number. If it does, it counts how many times it divides (the exponent) and then divides the number by this factor until it no longer can.
  • Updating Factors Count: The number of factors is updated by multiplying the product of each exponent incremented by one.
  • Remaining Prime Check: If after processing all factors up to the square root, the remaining number is greater than 1, it means it is a prime factor itself, contributing one more factor.
  • This approach efficiently computes the number of factors for each positive integer, ensuring correct and optimal results.

    转载地址:http://nvewk.baihongyu.com/

    你可能感兴趣的文章
    NOI2010 海拔(平面图最大流)
    查看>>
    NOIp2005 过河
    查看>>
    NOIP2011T1 数字反转
    查看>>
    NOIP2014 提高组 Day2——寻找道路
    查看>>
    noip借教室 题解
    查看>>
    NOIP模拟测试19
    查看>>
    NOIp模拟赛二十九
    查看>>
    Vue3+element plus+sortablejs实现table列表拖拽
    查看>>
    Nokia5233手机和我装的几个symbian V5手机软件
    查看>>
    non linear processor
    查看>>
    Non-final field ‘code‘ in enum StateEnum‘
    查看>>
    none 和 host 网络的适用场景 - 每天5分钟玩转 Docker 容器技术(31)
    查看>>
    None还可以是函数定义可选参数的一个默认值,设置成默认值时实参在调用该函数时可以不输入与None绑定的元素...
    查看>>
    NoNodeAvailableException None of the configured nodes are available异常
    查看>>
    Vue.js 学习总结(16)—— 为什么 :deep、/deep/、>>> 样式能穿透到子组件
    查看>>
    nopcommerce商城系统--文档整理
    查看>>
    NOPI读取Excel
    查看>>
    NoSQL&MongoDB
    查看>>
    NoSQL介绍
    查看>>
    NoSQL数据库概述
    查看>>